

Design and Analysis of Algorithm Page 1

UNIT-1

1) Algorithm

• An algorithm is a set of steps of operations to solve a problem. It performing calculation, data

processing, and automated reasoning tasks.

• An algorithm is the best way to represent the solution of a particular problem in a very simple and

efficient way.

Why study Algorithm?

As the speed of processor increases, performance is frequently said to be less central than other software

quality characteristics (e.g. security, extensibility, reusability etc.). However, large problem sizes are

commonplace in the area of computational science, which makes performance a very important factor.

This is because longer computation time, to name a few mean slower results, less through research and

higher cost of computation (if buying CPU Hours from an external party). The study of Algorithm,

therefore, gives us a language to express performance as a function of problem size.

Design and Analysis of Algorithm Page 2

An algorithm must have the following properties:

o Correctness: It should produce the output according to the requirement of the algorithm

o Finiteness: Algorithm must complete after a finite number of instructions have been executed.

o An Absence of Ambiguity: Each step must be defined, having only one interpretation.

o Definition of Sequence: Each step must have a unique defined preceding and succeeding step.

The first step and the last step must be noted.

o Input/output: Number and classification of needed inputs and results must be stated.

o Feasibility: It must be feasible to execute each instruction.

o Flexibility: It should also be possible to make changes in the algorithm without putting so much

effort on it.

o Efficient - Efficiency is always measured in terms of time and space requires implementing the

algorithm, so the algorithm uses a little running time and memory space as possible within the

limits of acceptable development time.

o Independent: An algorithm should focus on what are inputs, outputs and how to derive output

without knowing the language it is defined. Therefore, we can say that the algorithm is

independent of language.

Need of Algorithm

1. To understand the basic idea of the problem.

2. To find an approach to solve the problem.

3. To improve the efficiency of existing techniques.

4. To understand the basic principles of designing the algorithms.

5. To compare the performance of the algorithm with respect to other techniques.

Design and Analysis of Algorithm Page 3

6. It is the best method of description without describing the implementation detail.

7. The Algorithm gives a clear description of requirements and goal of the problem to the

designer.

8. A good design can produce a good solution.

9. To understand the flow of the problem.

10. To measure the behavior (or performance) of the methods in all cases (best cases, worst

cases, average cases)

11. With the help of an algorithm, we can also identify the resources (memory, input-

output) cycles required by the algorithm.

12. With the help of algorithm, we convert art into a science.

13. To understand the principle of designing.

14. We can measure and analyze the complexity (time and space) of the problems

concerning input size without implementing and running it; it will reduce the cost of

design.

Characteristics of Algorithms

The main characteristics of algorithms are as follows:

• Clear and Unambiguous: Algorithm should be clear and unambiguous. Each of its steps should be clear

in all aspects and must lead to only one meaning.

• Well-Defined Inputs: If an algorithm says to take inputs, it should be well-defined inputs.

• Well-Defined Outputs: The algorithm must clearly define what output will be yielded and it should be

well-defined as well.

• Finite-ness: The algorithm must be finite, i.e. it should not end up in an infinite loops or similar.

• Feasible: The algorithm must be simple, generic and practical; such that it can be executed upon will the

available resources. It must not contain some future technology, or anything.

Design and Analysis of Algorithm Page 4

• Language Independent: The Algorithm designed must be language-independent, i.e. it must be just plain

instructions that can be implemented in any language, and yet the output will be same, as expected.

Design and Analysis of Algorithm Page 5

2) Algorithm Specification:

Algorithm can be described in three ways

(i) Natural language: use a natural language like English

(ii) Flow charts: Graphic representations called flowcharts, only if the algorithm is small and simple.

Common flowchart symbols

(iii) Pseudo-code: also avoids most issues of ambiguity; no particularity on syntax programming

language

• Pseudo code is a kind of structure English for describing the algorithm.

• It allows the designer to focus on a logic of the program without being distraction (diverted) by

detailed of language.

• Pseudo code is a detailed yet readable description of what a computer program (or) algorithm

must do, expressed in a formally styled natural language rather than in a programming language.

• Comments begin with // and continue until the end of the line.

• Blocks are indicated with the matching braces {and}

Design and Analysis of Algorithm Page 6

• An identifier begins with a letter

• The data type of variables are not explicitly declared

• Assignment of values to variables is done using assignment statement

<Variable> :=< expression>;

• There are two Boolean values TRUE and FALSE.

• Logical operators: AND, OR, NOT

• Relational operators: <, <=,>,>=, =

• The following looping statements are employed:

while, do-while, for

• Input and Output are done using the instructions read & write

3) Performance Analysis:

Performance analysis of an algorithm depends upon two factors i.e. amount of memory used and

amount of compute time consumed on any CPU. Formally they are notified as complexities in terms of:

(i) Space Complexity

(ii) Time Complexity

Space Complexity of an algorithm is the amount of memory it needs to run to completion i.e. from start

of execution to its termination. Space need by any algorithm is the sum of following components:

1. Fixed Component: This is independent of the characteristics of the inputs and outputs. This

part includes: Instruction Space, Space of simple variables, fixed size component variables,

and constants variables.

2. Variable Component: This consist of the space needed by component variables whose size

is dependent on the particular problems instances(Inputs/Outputs) being solved, the space

needed by referenced variables and the recursion stack space is one of the most prominent

components. Also this included the data structure components like Linked list, heap, trees,

graphs etc.

 Therefore the total space requirement of any algorithm 'A' can be provided as

 Space (A) = Fixed Components (A) + Variable Components (A)

Design and Analysis of Algorithm Page 7

Among both fixed and variable component the variable part is important to be determined

accurately, so that the actual space requirement can be identified for an algorithm 'A'. To identify the

space complexity of any algorithm following steps can be followed:

1. Determine the variables which are instantiated by some default values.

2. Determine which instance characteristics should be used to measure the space

requirement and this is will be problem specific.

3. Generally the choices are limited to quantities related to the number and magnitudes of

the inputs to and outputs from the algorithms.

4. Sometimes more complex measures of the interrelationships among the data items can

used.

Example: Space Complexity

Algorithm Sum (number, size)\\ procedure will produce sum of all numbers provided in 'number' list

{

result=0.0;

for count = 1 to size do \\will repeat from 1,2,3,4,. .. size times

result= result + number[count]; return

result;

}

In above example, when calculating the space complexity we will be looking for both

fixed and variable components. here we have

Fixed components as 'result','count' and 'size' variable there for total space required is three(3) words.

Variable components is characterized as the value stored in 'size' variable (suppose value store in

variable 'size 'is 'n'). because this will decide the size of 'number' list and will also drive the for loop.

therefore if the space used by size is one word then the total space required by 'number' variable will be

'n'(value stored in variable 'size').

 Therefore the space complexity can be written as Space (Sum) = 3 + n;

Time Complexity of an algorithm (basically when converted to program) is the amount of computer

time it needs to run to completion. The time taken by a program is the sum of the compile time and the

run/execution time. The compile time is independent of the instance (problem specific) characteristics.

following factors affect the time complexity:

1. Characteristics of compiler used to compile the program.

2. Computer Machine on which the program is executed and physically clocked.

3. Multiuser execution system.

4. Number of program steps.

Design and Analysis of Algorithm Page 8

Therefore the again the time complexity consist of two components fixed(factor 1 only) and

variable/instance(factor 2,3 & 4), so for any algorithm 'A' it is provided as:

Time (A) = Fixed Time (A) + Instance Time (A)

Here the number of steps is the most prominent instance characteristics and The number of steps any

program statement is assigned depends on the kind of statement like

• comments count as zero steps,

• an assignment statement which does not involve any calls to other algorithm is counted as

one step,

• for iterative statements we consider the steps count only for the control part of the statement

etc.

Therefore to calculate total number program of program steps we use following procedure. For this we

build a table in which we list the total number of steps contributed by each statement. This is often

arrived at by first determining the number of steps per execution of the statement and the frequency of

each statement executed. This procedure is explained using an example.

Example: Time Complexity

In above example if you analyze carefully frequency of "for count = 1 to size do" it is 'size +1' this is

because the statement will be executed one time more die to condition check for false situation of

condition provided in for statement. Now once the total steps are calculated they will resemble the

instance characteristics in time complexity of algorithm. Also the repeated compile time of an algorithm

will also be constant every time we compile the same set of instructions so we can consider this time as

constant 'C'.

Therefore the time complexity can be expressed as: Time (Sum) = C + (2size +3)

So in this way both the Space complexity and Time complexity can be calculated. Combination of both

complexities comprises the Performance analysis of any algorithm and cannot be used independently.

Both these complexities also help in defining parameters on basis of which we optimize algorithms.

Asymptotic Notations

Execution time of an algorithm depends on the instruction set, processor speed, disk I/O speed, etc.

Hence, we estimate the efficiency of an algorithm asymptotically.

Time function of an algorithm is represented by T (n), where n is the input size.

Different types of asymptotic notations are used to represent the complexity of an algorithm. Following

asymptotic notations are used to calculate the running time complexity of an algorithm.

O − Big Oh

Ω − Big omega

θ − Big theta

Design and Analysis of Algorithm Page 9

o − Little Oh

ω − Little omega

Randomized Algorithm:

An algorithm that uses random numbers to decide what to do next anywhere in its logic is called

Randomized Algorithm.. For example, in Randomized Quick Sort, we use random number to pick the

next pivot (or we randomly shuffle the array). And in Karger’s algorithm, we randomly pick an edge.

In addition to input, algorithm takes a source of random numbers and makes random choices during

execution . Behavior can vary even on a fixed input.

Simple randomized algorithm contains.

(i) Execution time may vary from run to run

(ii) Different inputs there may be different out comes on each execution

(iii) For same input there may be different out comes on each execution.

Randomized algorithm can be classified into two classes.

1. Las Vegas Algorithm.

2. Monte Carlo Algorithm.

1. Las Vegas Algorithm.

A Las Vegas algorithm runs within a specified amount of time.

If it finds a solution within the time frame the solution will be exactly correct however it

is possible that ir runs out of time and does not find any solution.

2. Monte Carlo Algorithm.

A Monte Carlo algorithm is a probabilistic algorithm which depending on the input ha a

slight probability of producing an incorrect result or failing to produce a result altogether

performance analysis.

https://www.geeksforgeeks.org/kargers-algorithm-for-minimum-cut-set-1-introduction-and-implementation/

Design and Analysis of Algorithm Page 10

REFERENCE:

• Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran,

Galgotia Publications, 2015

• Introduction to the Design and Analysis of Algorithms, Anany Levitin, Pearson

Education, 2nd Edition.

Design and Analysis of Algorithm Page 11

